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The dynamics of an electroriiectlanioa.1 clock with the Ffipp movement is considered . 
Two models are investigated: a dry-friction model and a viscous-friction model. In the 

case of the model with dry friction we isolate the domains 
of the parameter space which correspond to simple stable 
periodic motions. the domains corresponding to complex 

stable periodic motions, and the domain of parameter values 
in which the system experiences nonperiodic oscillatory 

motion. III the case of the viscous-friction model we isolate 

the donlain% af 1% parameter space corresponding to a single 
stable periodic Inotion, the Jomains corresponding to two 

s1t11ple stable periodic motions, the domains corresponding 
t<> c~11pIex stable periodic motions, and the domains corre- 
sponding to rwo stable periodic motions, one of which issim- 

pie and rhe other complex. 

1. Description of ths mschonirm, Equation8 of motion, Con- 
version to &n fnatantan8oue-pufse model, A schematic diagrarri of the 

1 lipp regulator in an electromechanical clock is shown in Fig. 1. 

~‘e~l~~I~un~ i experiences free damped os~jIlations until contact device 2 closes the 
electrical eirC:uit and the prnclulum receives a pus!iing pulse Xhich increases its swing. 

I-igure 2 sf~oxs t\\‘o positions of the contact device. ‘Ihe first positiurl corresponds to 

tht;: instant when the velocity of tie penduILulI tlianges sign. and when the atnplitude has 

decreased to such an extent that tongue 3 mounted on the contact leaf spring is caught 

between the teeth of catch .I connected to the pendulum rod. rZs the pend~ii~~tll 
swings hack, tongue ,3 bends contact spring ,; and closes the electrical circuit (second 

position in Fig. 2). 
Neglecting the damping of oscillator motion derring the pulse and making the usual 

simplifying assumptions concerning the character of pulse transfer iJ., ‘21. we ohtain the 

following equations of motion : 
,)X. .! Tl’zx’ / j;t -: ___ Q 7-z? , !ir -0 i1.t) 

hetweeri pulses. and 
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Dynamic models of the Hipp pendulum regulator 115 

mr” + kx = My,2, Ly,’ + Ry, = E (1.2) 
during a pulse. 

Here m is the reduced mass ; H,. Q are the coefficients of viscous and dry friction, 

respectively ; k is the restoring force coefficient ; MyI is the magnitude of the force; 

L is the self-inductance of the coil; R is the circuit resistance ; E is the electromotive 
force ; J: is the coordinate of the pendulum measured from the position of static equi- 

librium ; YI is the current strength. 

Let n,>...>AN>... be the series of successive “left-hand”amplitudes with free 
damped motion of the pendulum between two successive pulses. The pulse in conveyed 
to the pendulum in the zone 

-2b < z < 0. z’ > 0 

if the amplitude A,,, falls in the interval 

/ ml ( < n.v c, I Jfl I 

where 1 Al, 1 is the maximum amplitude at which the contact device is actuated, and 

0 = & (4mk - Hc2)"' (H22 - 4mk < 0) 

Introducing new variables and the parameters 

(1.3) 

(1.4) 

we reduce Eqs. (1.1) and (1.2), respectively, to the form 

I” + :!Hlx’ -i_ x = - r k , y=o (1.5) 

J” + x z $, 1/’ L Ay z AR (1.6) 

The changeover from (1.6) to (1.5) occurs when 5 = 0, 5’ > 0 ;the changeover from 

(1.5) to (1.6) occurs when z = -2b on the segment s. The segment s is the image 
of the segment [Al,, m) of the s-axis on the half-line z = - 2b, y = 0, x’ > 0 along 

the segments of the trajectories of Eq. (1.5) with the smallest changeover time. 
Let us convert to the instantaneous-pulse model by taking the limit as b - 0 in Eqs. 

(1.6) and setting 

Here r is the pulse duration. 
To this end we must find analytic expressions for the point transformation of the seg- 

ment 8 into the segment u of the half-line r = 0, 5’ > 0, y = 0. 
bet u E s and u E o . We then obtain the following expressions for. the point trans- 

formation : 

cosz--B~(t:!, 2:zzY ,f z [‘b + BY (z)l (1.8) 

Here 



From the first equation of(l.8) we infer that for any u = const > 0 there exists (see 

Appendix 1) a function r =: T (h) such that limr (b) = 0 (b ---f 0). 

Naking use of (l-7), we can rewrite (1. S) as 

Taking the limit as h -+ 0 in expressions (1.9) (see Appendix 2), 

,, =-- 3,‘, [(!? / I,Jiil - I,,], I> = ‘/, [(/t / I,)*/* -!- 3Z,] 

and eliminating IO, we finally obtain the relationship between the prepulse 

velocities of the oscillator acted on by an ~stantaneous pulse, 

(LI - u) (L: L :311)R = h 

Let us consider curve (1.10) in the plane IIU . We have 

d., 3#, _- ‘T,i. ii% 3 I?, 
- -_ .I-~ 
IIlL u ’ IIIl~ ->O (3 (0 - 3U)? 

(1.9) 

and postpulse 

(1.10) 

(1.11) 

For II y 0 we have (11; / (1~ - -- 2 ; curve (1.10) has a minimum for I’ .-= “it u , As 

u -- m it approaches the asymptote Y 7 u from above (Fig. 3). 

Noting that 
dl> 1 

(I.19 
dl6 1 -- -.- _- __ for 1’ > s;? IL 

dk -- 4~ (c-i 3rtf ’ dk ~- 
.--_ I> 0 

4 (:!r - 31~) [P -+ 3a) I< 0 for P _ 3’z tl 

we conclude that as the parameter h increases (decreases) curve (1.10) rises (falls). 

2. The dry-friction model. ‘2.1, Reduction of the problem to 

a point transformation. betus 

consider a model with dry friction (*) 
(setting H, --_ 0 in Eq, (1.5)) and with 
the segment s contiguous with the axis 

x’ == O.In this case (1.3) and(l.4) imply 
‘I \ 

-\ 
‘\ 

Fig. 3 

*) See next page. 

Fig. 4 
- 
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that M1 = - 6r, m, = - 2r (Fig. 4). 
The points of the segment s (5 = 0, o < x’ 4 2r v/6? correspond to states in which the 

oscillator receives a pulse. On reaching the point with the coordinates I = 0, X’ = u 
on the segment s, the representing point instantaneously jumps in accordance with Eq. 

(1. i0) to the point x = 0, X’ = U. The segment o of the half-line x = 0, x’ > 0 is the 

mapping of s over Eq. (1.10). The phase space of the system is filled with the trajecto- 

ries of Eq. (1.5) (in the given case by spirals consisting of segments of half-circles) ori- 

ginating at points of the segment o and ending at points of the segment S. The segment 

s lies between neighboring coils of the spiral. Every trajectory having a point of c as 

its origin intersects the segment s if the segments 6 and .V do not have points in com- 

mon (the points belonging to the intersection of (3 and s lie on the rest segment). The 
point transformation T into itself of the segment 0 completely defines the structure of 

the decomposition of the phase space into trajectories. 

The transformation of the segment CJ into the segment s (ul E (J, u E s) is of the 
following form : (v12 f r2)‘/1 - (u” + r2)‘la = 4rN (2.1) 

Here 1%’ is determined unambiguously for each +. 
2.2. Investigation of the transformation of the segment o into 

the segment s. Let us consider curve (2.1) (N = 1,2, . ..) in the plane u, rl. Let 

D, (0, v1 (0, N)) be the points of intersection of the various branches of curve (2.1) with 

the straight line u = 0 (vl (0, N) = 2r [2N (2N + f)]‘/z). The points P, (I(~. ~1~ (0, N $ 1)) 
are then the points of intersection of the corresponding branches of curve (2.1) with the 
straight line u = u1 (ul = 2rl/%). We denote the half-intervals V, (0,N) < u1 <ul 
(0,N + 1) on the axis U~ by saV. 

Equation (2.1) defines the quantity u as a single-valued function of u, for all v1 > u1 
(0, 1) and fc belonging to s (0 < u < ul) ; this function is discontinuous at the points 

u1 = 01 (0, fly). 
From expression (2.1) we obtain 

2.3. Investigation of the stability of the fixed points of the 

transformation T. Now let us consider curves (1.10) and (2.1) (the Lameray dia- 
gram) on the plane uu . For the parameter values which satisfy the condition 

r = l/lZ 1/ IL’/’ (2.3) 

curve (1.10) and the branch N = 1 of curve (2.1) cut off equal segements u = 2r 1/6 

(i. e. they pass through the point Dl) of the axis v of the Lameray diagram. For 

r > 1/Ia .1/&‘/4 curves (1.10) and (2.1) do not have points of intersection (here o C s 

and the clock does not work). 

Let us take the parameter values which satisfy condition (2.3). At the point D, we 

have du / dv, = --00. We hold the parameter r fixed and increase h until curves (1.10) 

*) See [3] for a discussion of a clock with the Hipp movement in this idealization with 
allowance for dry friction only. Postulating the realizability of the simplest type of 
motion for all values of the system parameters, the author of [3] confines himself to the 
determination of the period of this motion. 



a?d (2.1.) intersect at the point f”r (such a value of 111 exisrs by virtue of (1.12)). At this 
point we have C_$,l ; o’c-r -= “iii (3 - j/J”i3) > - i 

It follows from the above that there are values of the parameters h and r such that 

dv / dL.i == - 1 

at the point of intersection of curves (1.10) and (2.1). 

A similar analysis can be carried out for rhe branch 19’ = ? of curve (2. I). Thus, for 
the branches ;V -.1 and # -= 2 there exists a bifurcation of a fixed point of the trans- 

formation T for which the root of the characteristic polynomial passes through the value 

h= -1. 
The equation of the corresponding bifurcation curve is of the form 

(u - 21) (U + 3/t)” = Ii, (U2 -I- ra)‘h - (!iz + r2)‘” = 4riV 

U - 
u i 

$ _/_ yz ‘f:! 
,-) z+ 

From the third expression of (‘2.4) we obtain 

(2.4) 

3 3u-v 
rs zz - - u2 4 U - “U 1 

(?.Ti) 

This implies that 

20~3 (z EE v / U) (2.6) 

From (2.4) we readily obtain an equation for determining z . 

(z + 1) (2 i_ 2)2 - 12x2 (3 - z)2 = 0 (2.7) 

This,equation has a unique positive root. Making use of (2.5), we obtain the following 

expression for the bif!r.rcation curve: 

(2.8) 

Here z is the root of Eq. (2. 7). 

For tile coordinates of the poinr f_s (the coordinates of the right-hand end of the branch 

N = 3 of curve (2.1)) is z = 2 v3 > 3. For the points of intersection of curve (1.10) 

with the branches N = 3,4, . . . we have div i dv, < - 1 , so that the corresponding fixed 
points of the transformation T are unstable. 

For parameter values which satisfy the condition 

curve (1.10) passes through the point P,. If the parameters chosen satisfy the condition 

rl (2, h) < r < rz (N, h) (2.10) 

(here z is the root of Eq. (2.7)) for N‘= 1 and N = 2, then the fixed points of the trans- 

formation T are stable. 
2.4. Instability of the fixed points of the transformation P for 

*V>S. When the parameters chosen satisfy the inequality 

!>I” 2 &. 14 (2 - J/r3 13) (2 4.. v’ 3)3j’!1- (2.11) 

for u E s , curve (1.10) lies above the point P,. 
The following statement is valid : for parameters satisfying condition (2.11) the trans- 

formation T* (n = 1,2, . ..) can have only unstable fixed points (only unstable limit 
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cycles can exist in the phase space of the dynamic system under consideration). 

In fact, for any u E s we have the inequality 

(the slopes of the branches of curve (2.1) decrease with increasing N for eat:) v ) ; fulfill- 
ment of (2.11) implies that the following chain of inequalities holds: 

. 
Let the transformation Tn have a fixed point Y”) = v(“+~) = I:*, i.e. 

U* = Tnl;* 

We now have the following expression for the root 1. of the characteristic polynomial 
of the transformation T’! : 

But by virtue of (2.12) we have 

I%),Ci)/~~Ji+l)>l 

IIence. 1 h 1 > 1 and the statement has been proved. 

2.5. The number of fixed points of the transformation T. Curve 

(1.10) can have only one point of intersection with each branch of curve (2.1). In fact, 

at the point of intersection (u = rl) we have 

Let us investigate the number of points of intersection of curve (1.10) with the various 

branches of curve (2.1) for U:E s. When the chosen parameters satisfy condition (2.9), 

curve (1.10) intersects the N th branch of curve (2.1) at the point P, at which (see Ap- 
pendix 3) du / &s < 0. Hence, by virtue of (1.12) among the parameters satisfying the 
condition r > r2 C-v, h) 

there are parameters such that curve (1.10) intersects not fewer than two (fi and ,2’ -+ 1) 

branches of curve (2.1)). 
For parameter values satisfying the condition 

I,“4 
r= 

2[:!(N+p +l)(av+‘p+3)]‘/~ 
(:!A:<) 

curve (1.10) passes through the point DN+p+l for P = j (j = O,l, . ..) 
The point of intersection of curve (1.10) with the axis u lies in the interval .Y,,,+~~~ 

as p varies in the range j < p < j + 1 c 
Let us stipulate that curve (1.10) passes through the point P, and determine the lar- 

gest number N + i + 1 of the interval s.~+j. 1 into which it falls. 

hlaking use of (2.9) and (2.13). we obtain the following equation for determining p: 
(LlfG) 

--- 
O\’ + P + 1)* (ZN $- “p + 3)? = [ 1/(N + 1)(‘N + 3) - V/3][3 1/:i + I/(N f 1)(2N + ::,]a 

The number I of required points of intersection of curves (1.1 U) and (2.1) can be 
expressed in terms of P 1 :- [p] $- 2 



Fiery [p] denotes the whole part of P. 
We ca:l sliow (see Appendix 4) that 1 < p < 3. Thus, when the chosen parameters satis- 

fy condition (2. ll), the transformation 7’ can have two, three or four unstable fixed points. 

Fig. 5 

Figure 5 shows the phase space of the system in the case where curve (1.10) intersects 
two branches of curve (2.1). The segment s is divided into three parts: the points of the 

lower part return to s after the jump onto the segment o (according to (1.10)) and five 
turns in the plane ZZ’ (according to (2.1)) ; the points of the middle portion return after 
four turns, and the points of the upper portion after three turns. 

2.6. Decomposition of the parameter space and the character 
of the fixed points of the transformation P. Equation (2.3) defines in 
the parameter space h”‘; . I a straight line which isolates the domain [ 0 ] when the clock 

is not working (Fig. 6). 
The requirement that the minimum of curve (1.10) be equal to the minimum of the 

branch N = 1 of curve (2.1) yields the equation 
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(the straight line {al}). Above the straight line {sl} in the parameter space is a domain for 

which the segments u and s do not have generic points, and such that for any initial con- 
ditions the representing point falls into that part of the phase space which is filled with 

the trajectories of Eq. (1.5) which begin at the segment CT and end at the segment s. In 
its subsequent motion the representing point cannot leave the indicated portion of the 
phase plane (the clock is working). 

Inequalities (2.10) (which can be fulfilled 
for N = 1 or N = 2 only) isolate from among 
the parameters lying above the straight line 

{ai? the domains of existence of stable fixed 

points of the transformation T corresponding 

to the simplest stable periodic motion in which 

a pulse is transferred after each N oscillations 
of the oscillator (in Fig. 6 domain [ 1 ] corre- 
sponds to N = i and domain [2 ] to N = 2). 

Condition (2.11) isolates domain [ 3 ] which 

corresponds to nonperiodic oscillatory motion 
of the system (the representing point does not 

leave the indicated strip of the phase space 
in which a stable limit cycle of any multi- 

Fig. 6 plicity cannot exist). 

Let us consider the domain of the parame- 

ter space which is defined by the inequality 

r > r, (2, h”<) 

Here :. is the root of Eq. (2.7) for N= 1. In this domain a fixed point of the transfor- 

mation 2’ can be unstable only. For any r there exist values of the parameter h taken 
from-this domain for which there exists a pair of stable fixed points of the transformation 

T2, and also values of this parameter for which there exists a pair of unstable fixed points 
of the transformation T2 (see Appendix 5). For this reason we expect that variation of the 

parameter h will be accompanied by bifurcations of a fixed point of the transformation 
1‘2 such that the root of the characteristic polynomial (for this transformation) passes 

through the value h = - 1 and the four fixed points of the transformation T4 either 

appear or vanish. 
We investigated the character of the bifurcations of the fixed points of the transforma- 

tion Tn with the aid of a BES M-3M computer. 
In order to determine the character of the bifurcation of the fixed point of the trans- 

formation T for which the root of the characteristic polynomial passes through the value 
A. = - 1 (passage in the parameter space through the lower boundary of either domain 

[l ] or domain [2 ] in the direction of decreasing h) , we computed the value of g, (see 
~41) for several parameter values and computed (for n = 2) the function 

v (u) = T’w - v (2.16) 

Our analysis showed that when the indicated passage occurs the fixed point of the 
transformation T becomes unstable and gives birth to the two stable fixed points of the 
transformation ~a corresponding to stable periodic motion which is repeated after two 



pulses, and in which the impulses alternate with AJ (N =- 1.2) oscillations of the oscillator. 
Construction of function (2.16) for n = 4 showed that the bifurcation of a fixed point 

of the transformation 7’ (discussed above) for which the root of the characteristic poly- 

nomial passes through the value h = - I does exist, and that on passage through the cor- 
responding bifurcation curve in the direction of decreasing h in the parameter space, the 

pair of fixed points of the transformation T2 changes from stable to unstable. This is 

accompanied by the emergence from these points of the four stable fixed points of the 
transformation 7’4 which correspond to stable periodic motion in which repetition occurs 

after four pulses, the pulses alternating with one (:V = 1) oscillation of the oscillator. 

Figure 7 shows the graph of the function V (u) 
constructed for the parameter values /L,“~ 7 : 
= 0.5, r = 11,05S6,5. The zeros of the func- 

j tion indicated by the small circles in the 
Figure correspond to the unstable limit cycles 

(the middle dot corresponds to a single-turn 

limit cycle, the two extreme dots to a two- 
turn limit cycle); the zeros of the function 

indicated by dots in the figure correspond to 
a four-turn stable limit cycle. 

Construction of function (2.16) for /! r S 
showed that there exist bifurcations of a fired 
point of the transformation 7” for wllic!, the 

root of the characteristic polynomial passes 

through the value h == -- 1, and that on passage 
through the corresponding bifurcation curve 

in the direction of decreasing /, in the para- 
meter space, the four fixed points of the trans- 

formation 7’* change from stable to unstable; this gives rise to the eight stable fixed 

points of the transformation Ts corresponding to stable periodic motion in which repeti- 

tion occurs after eight pulses, the pulses alternating with a single oscillation of the oscil- 
lator. 

Let us cite the bifurcation values of the parameter r (for h1,Lm=U.5 and N q = 1) which 
correspond to the birth of the stable fixed points of the transformation 7“’ (‘1 “, i,8) 

7’2 for r -= 0.05035, T4 for r .= 0.05836, 78 for r = 0.05876 

The above values of the parameter r define the ranges of existence of fixed stable 

points of the transformations T2 and 1’* , respectively, 

0.05035 < r < 0.05836, 0.05836 < r < 0.05876 

3. The vircou#-friction model. 3.1. The point transformation. 
Let us consider the viscous-friction model (setting r = 0 in Eq. (1.5)). The oscillator 

receives a pulse in the segment s , 

I = 0. 0 < u. = KeCzrrH < x’ .< K = u.1 H = Ill (1 - HI?)-“~ 

The transformation of the segment u into the segment s (~1 t o, u E S) is of the fol- 

lowing form : u1= ue ‘m RN (3.1) 

Curve (3.1) has N (N = 1,2, . ..) branches (straight-line segments). 
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Let D N (uO, u1 (u,, N)) be the points of intersection of the various branches of curve 
(3.1) with the straight line u = ug (ul (u,,N) = ~~~~~(~-l)).The points P, (ul, I+ (u,, 

N -I- 1)) are then the points of intersection of-the corresponding branches of curve (3.1) 
with the straight line u = ul. As above, sN are the half-intervals VI (% NJ < “I < “1 

(uO, N + 1) on the axis vl. 

Equation (3.1) defines the quantity u as a single-valued function of v1 discontmuous 
at the points ~tsv, = v1 (u,, N) ; this definition is valid for all I+ > v (u,, 1) and all 11 

belonging to s . 
Expressions (1.10) and (3.1) define the transformation T of the segment (J into itself. 

Let us consider the relative disposition of curve (1.10) and of the branches of surve (3.1) 
(straight-line segments) in the range (u,, u,]. 

At the point of intersection of curves (1.10) and (3.1) we have 

1 au/au I < ) dv,ldu j (3.21 

so that curve (1.10) can have a unique point of intersection with each branch of curve 

(3.1) ; this point of intersection corresponds to the stable fixed point of the transforma- 
tion T. 

Let W be the largest and w the smallest ordinate of curve (1.10) in the segment ._s. 

Inequality (3.2) is valid (see Appendix 6) for all points of curves (1.10) and (3.1) in the 
interval [UJ, WI,, so that curve (1.10) can intersect not more than two distinct branches 

of curve (3.1) (the interval (T lies on not more than two half-intervals sN and s~,~) ;the 
transformation T* (n = 1, 2 , . ..) can have only stable fixed points (limit cycles of any 

multiplicity in the phase plane of the model under consideration can only be stable). 

The following three variants of relative disposition of curve (1.10) and branches (3.1) 
are possible; curve (1.10) does not intersect any branch of curve (3.1); it intersects the 

( N + 1 )-th branch ; it intersects two branches, N and N + 1. 

In the first case, making use of (3.2) and repeating the arguments of [5], we can show 
that the transformation P has n stable fixed points which correspond to stable periodic 
motion in which series of N and N + 1 oscillations of the oscillator alternate with the 

pulses: 

In the second case there always exists a single stable fixed point of the transformation 
2’ which is associated in the phase plane with a spiral of N + 1 turns with closure by an 

instantaneous pulse; moreover, there can exist n stable fixed points of the transformation 

Tn (when the interval (5 lies on the two half-intervals sN and s~+~). Depending on the 

initial conditions, a simple or complex stable periodic motion is established. 

In the third case there always exist two simple stable fixed points of the transforma- 
tion T. Depending on the initial conditions, we have either a periodic motion in which 

the pulses alternate with N oscillations, or a periodic motion in which N + 1 oscillations 
alternate with the pulses. 

3.2. Structure of the parameter space. Now let us consider the parame- 

ter space H, h and K and isolate in it the domains corresponding to each of the three 
aforementioned variants of relative disposition of curve (1.10) and branches of curve(3.1). 

For parameter values satisfying the condition 

h = e+H (e2x HN _ i)@” HN + 313 K4 G c1 (N, H) K4 (X3) 

curve (1.10) passes through the point D N (cutting off equal segments of the straight line 
u = uo with the N th branch of curve (3.1) ). 
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For parameter values satisfying the condition 

h = (e2- HN - 1) (e2x H.V + 3)s K4 s Gz (N, H) Kd (3.4) 
curve (1.10) passes through the point P, (cutting off equal segments of the straight line 
u = u1 with the Nth branch of curve (3.1) ). 

Equations (3.3) and (3.4) define two families of surfaces (ay} and {PN] (N= 1,2, . ..). 
in the parameter space ; these fimilies of surfaces have the following properties (see 
Appendix 7) : the surfaces within each of the families ({x,j or {.$.y}j do not intersect 

for H > 0 and K > 0; the surfaces of the respective families do intersect. and the sur- 
face {aN+l) intersects only the surface (3sg , but only once. The cross section of the 

parameter space H, h, K cut off by the plane K = 1 is shown in Fig. 8. 
The surface {aI} bounds the domain [ 0] 

of parameter values for which curves (1.10) 

and (3.1) do not have points of intersection ; 
here o c s and the clock does not work. 

Each pair of surfaces (aX j I) and {@.Y} 
(IV = 1, 2, . . . ) defines domains [ 2 ] and [ 3 ] 

(Fig. 8 shows only three such pairs). 

The domain [ 3 ] of parameter values lying 
below the surface {as+l) and above the sur- 
face @&) corresponds to the first variant of 

relative disposition of curves (1.10) and (3.1) 
(they do not intersect). Curve (1.10) lies 
between the N th and ( N i- I)-th branches 

of curve (3.1). 

Fig. 8 The domain [2 ] of parameter values situ- 

ated above the surface (cL~%-,,,} and below the 

surface fip,J corresponds to the third variant of relative disposition of curves (1.10) and 

(3.1). Curve (1.10) intersects the N th and ( N +I )-th branches of curve (3.1). 
The whole remaining portion of the parameter space is occupied by the domains [l J 

which corresponds to the second variant of relative disposition of curves (1.10) and (3.1). 
The domain [ 1 ] situated above domain [ 0 ] and below domains [ 3 ] and [ 2 ] defined 

by the surfaces {as} and {&) corresponds to the case where the interval o has points in 

common with the half-interval s1 only (there exists only one stable fixed point of the 
transformation T, and this point corresponds to the point of intersection of curve (1.10) 

with the first branch of curve (3.1)). 
For each fixed K the piece of the surface 

(hereH, is the coordinate of the line of intersection of surface (3.5) with the surface 

{cz~,,}) divides into two parts that part of domain [l ] which lies above the domains [3] 
and [2] defined by the surfaces (ccNsI) and (gN) and below the domains [3] and r2] 

isolated by the surfaces {oL~+~) and 6Plyt1J (A’ = 1, 2, . ..). The points of the domain which 

lie below the piece of the surface defined by (3.5) correspond to the case where the inter- 
val u lies on the two half-intervals So and s,,.+~, the points of the remaining part of the 

domain correspond to the case when the interval 0 lies on the half-interval sNtl only. 
In the second case there exists a unique stable fixed point of the transformation T which 
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corresponds ta the point of intersection of curve (I, IO) with the ( N + 1 )-th branch of 
curve (3.1); in the first case we can isolate (see Appendix c3) the domains [la], [iSI, .‘.) 

l *rt I&], each of which contains not only this fixed point, but also a stable fixed point 
of the rransformations P, T3, .“., T” , respectively. The domain [1J is bounded by the 
surface {uNIx} and by the surfaces defined by the conditions 

U1 ([la) = u (u,), % (%I = v (UI) 

(the surfaces Qr13 and (~.J) which are connected on surface (3,5> along the curve whose 
coordinate N can be determined from the equation 

(2&SWW _ 3) {2,%WW + 919 = cJ@WHN 

(the case where up = ua = urnin and v (u& = u (~~1). The points of the surface {yi) 
correspond to a phase space with a simple limit cycle whose zone of attraction consists 

of the entire phase plane with the exception of the countable set of points ~onst~~t~ng 
the zone of attraction of the two-turn limit cycle, 

Figure 9 shows a qualitative picture of the cross section of the parameter plane cut 
off by the plane K = con& in some neighborhood of the point of intersection of the sur- 
faces {CL,> and @I)* The domains fl,l, If?], -._? Ii,1 are shown a “lobules” lying along 
{aJ ; these lobules cumulate towards the point II’. 

The coordinates h of the surfaces y and a for 
several values of H and K = 1 are as follows: 

H 106 = 33376 33565 3372’3 33957 34329 

FIG: 20.812 20.915 21.004 21.127 21.325 

{aJ: 20.812 20.908 20,990 21.105 21.291 

H $06 2: 34329 36935 39809 42837 44999 

@If: 21.328 22.691 24.113 25,520 26.467 

Fig. 9 C@: 21.291 22.584 23.985 25.439 26.467 

The coordinates @ iOS, h) for the characteristic points of the domains [f,,, [I,] and the 
point P are 

I’ (32266, 20.250), lY3 (32239, 20.262) Cp (32311, 20.273) 
I’, (33376, 20.8121, C, (34329, 21,3’,8), rl (44999, 26.46’7) 

Appendix 1. From the first equation of (I. 8) we obtain 

lJ (‘cl = & { u sin 1: + B2 [1 -COST - 2 F (A,T) -/- F (L~,T)]] 

We note that b (0) = O. For any tt = const we have 

Since 11’ (t) = (1 - e-AT)2 COST and u > 0, it follows that ~llr / dr > 0, so that there 
exists a function T = z (fi) such that 

ii$ Xt’ {ir> = O 

Appendix 2. For the functions TUT), F (T) and I# (a) we have 

cp (0) = ri)’ (O) = qY’ (0) = ,p’” (0) = 0, 9’” (0) = 2dZ 

5 (0) G 4’ (0) -_ E” (0) zzz 5” (0) E 0, Elk- (0) = 642 
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Jl (0) == 11” (I,) = Jl” (0) YZ (1, qj”’ (C,) :-: LA’ 

From the first expression of (1. 8) we find that for IL = ron~i 

Hence, there exists the limit 

(cont. ) 

Hence, (A. 1) implies that 

11 = 1 ;‘4 [ Cliil,,)‘~” - I”], 2’ -=: ;jy v (T)= i/4 [(h/Z”)“? + :! J,,J !A.:\) 

The condition I, = eonst for which the limiting process ossurs is equivalent to the 

condition h = con&. Hence, the limiting process for b - 0, B - C. and h = const 

yields (A. 3). 
Appendix 3. At the point PI (Zr Jf6 4r r/57 we have dv i CEu < 0. Since 

-igq(u-i_- <o (14 = const > 0) 

holds for curve (l,lO), we recall (1.12) to conclude that du / du < 0 also holds at the 

point p,v. 
Appendix 4, The substitution 5% = (N -+ 1) (2;V + 3) transforms Eq. (2.14) into 

Zp” + p (1 + S5”)1’2 + 5” - [(L - jq (3 6% + 5t3J% = 0 

Here 5 > I/G, since A’ 2: 1. For p we obtain 

4p I= [ 1 _+ 8 (j - 1/F )‘!’ (:I r/z + p”] ‘/* - (1 + q,‘/z 

Let us consider the following function of the continuous argument 5 (q is a parameter): 

/ (5, Q) --_ (I + 8;s -1. 16&” - (1 -+ 8;2)l * 
such that 

f (Cl, (ii 0, !$ (;, ii) > 0 (5 > 0), lim f (5, q) --= (1 p’:i 
i-+-a - 

It is easy to show that for 6 > flu we have the inequalities 

Since the relations 
i (j, 3/q V;r) < 41’ < i (j, 3 Ji-Y) 

4 < / (j, “/? J’:i), j (5,s JE) < 12 

are valid for the function f (;, 11) , we have the following inequalities for p : 

A p pe n d i x 5. As we know, the pair of fixed points of the transformation Pcorre- 

spends in the Lameray diagram to a rectangle whose vertices lie on the curves (1.10) 
and (2.1). Let us consider the case where curve (1.10) intersects only the branch Iv == 1 
of curve (2.1). The rectangle with its vertex at the minimum of (1.10) (nlirlv > mill i.l 

= 3 v c) corresponds to the pair of stable fixed points of the transformation P. and 
the rectangle with its vertex at the minimum of (2, I) {ruin I?~ > mire c = ?I.‘J’*/ d;3 

corresponds to the pair of unstable fixed points of the transformation 1‘2. Let us show 
that there exist parameter values for which both of the above possibilities are realized. 

The condition under which there exists a rectangle whose vertex lies at the minimum 
of curve (I. 10) is of the form 
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{[ 16 r’? + ‘/z; V’iY + 8r (r? + 4/a; 1//T)“?] !/? - [1tir2 + l/s f/!I - 8r (r? + l/s l/K Jii2]‘/’ } ;( 

X {[Ifir + 4/27 1/7118r (r2f 4/2, l/7ij’/q]‘i? + 3 [ 16r2+ */3 l//t- 8r (rZ + l/z 1/K )“2]“2}3 =h 

This equation has a root in the range rl (z, h) / h”’ < r i h”’ < 1 / 1/z with respect 

to the variable r / hllr . The value r I h’l’ = 1 / 1/E corresponds to a disposition of 

curves (1.10) and (2.1) such that min u = min 1: 1 ; the function r = rI (z, h) is such that 

dLl / do, = -1 (rl (z, h) is determined by expression (2.8). 
The condition of existence of a rectangle whose vertex lies at the minimum of curve 

(2.1) is of the form 

r 1/4Z-- (II? + I’C- 8r 1/r2 + )/h )‘I’] [r ffjJ-+ 3 (f6r? + V’iT- Sr T/r2+“‘]‘=h 

This equation has a root in the range f / 1/7y< r / hli4 <i/1/43 with respect to the 

variable r 1 h’j4 . 

Appendix 6. The following cases are possible : 
a) curve (1.10) is situated in such a way that w > 2K. We then have the inequal- 

ities 
max -$& 

I I 
da 

<:!<min du 
I I 

b) curve (1.10) is situated in such a way that w < 2u, Jl’< 22~. Then 

max] du/du] < 1 < min]dv,/du] 

c) curve (1.10) is situated in such a way that w < 2u < W (curve (1.10) intersects 
the straight line L: = Zu) or 2U < li’ < 2K, TV > 2K. Since / &j / du j < 2, curve (1.10) 
in this case can intersect either the straight line v = 21,e2xIf or the straight line v = 
= “ue - -“-rr, i.e. we have either 

ma\- / d/-/&c j < mas { :! - 3/s c:--*~~~, 1) (~3 < “~e4”~~) 

or 
mnx 1 dl.(du I< max { :! -33/2 emzYH, I} (2: < %e’X1f) 

We note that if mnx (2 - 3/,~ 2zH, I} = 1, then the inequalities of Case(b) are fulfilled. 
Let us consider the case H < ‘1, n ln3/,. In this case we have, respectively, either 

max I dr/du I < 2 - 3/3 e- -I’ < 2, - e-2rH < 1/S < min 1 dclldu 1 
or 

IIIXS j dt’/d~ 1 < 2 - “is e-2zH < 1 < nlin 1 dl.l/:/lL 1 

In the case Ii > ?,n 111~1, only a branch of curve (3.1) for 1’ = 1 can lie below the 
straight line P = 2U, and the inequalities of Case (a) or Case (b) are fulfilled. 

Appendix 7. Let us consider the cross sections of surfaces (3.3) and (3.4) cut off 
by the planes ii = MII$~ (the curves in the plane Ilh). Clearly, 

G, (.V. Ii) < Gz (X> H), G, (IV, H) < G, (.V + 1, II), G, ()V, H) < G, (J + 1, H) 

Let us show that 

Noting that 
G, (IV, H) < G, (i\’ + 2, H) (A.4) 

( 1.5) 

c;, (N $- :‘, H) _ G, (N, H) = @fi?’ (,s-rr _ 1) -1 SefiXIr‘v @-II _ 1) + ‘7 (1 _ e-ErrH) > 0 

and inequality (A. 4) is valid. 
Now let us show that the equation 
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L’, (iv + 1: a) -~~ G, (_V, II) --= 0 (A.(i) 

has the unique positive root H*. Making use of (A. 5), we can reduce Eq. (A. 6) to 

f, (U) - /r (H) = 0 
jr (H) = @-IIN (i _ e+:ll) + i&4-IIS (i _ ,-.Wn), j2 (H) = “7 (i _ e-ariEr) 

for any fixed IN (-1’ = i,?, . ..) . 
Since 

fr (0) = j2 (0) := 0, fi’ (0) = 88.2, fr’ (H) > 0, fr” (H) > 6 

fa’ (0) -= 2iCn, f,’ (H) > 0, fz” (H) < 0, lim fl(11) = 00, 
H-CC 

lim I, (H) = 27 
H-00 

it follows that Eq. (A. 6) has a unique positive root H*, and the following inequalities 

are valid: 

G, (N, H) < G, (N + 1, H) (0 < H < H*), G, (N, H) > G, (N -i 1, H) (H > H*) 

Now let us consider the form of the cross section of surfaces (3.3) and (3.4) for K = 

= const and fixed N. It is clear that in this case 

dG,idH > 0, d’C,idH2 > 0, dG,,‘dH > 0, for N = 1,2, . . . 

d”C,ldH” > 0 for N = 45, . . . 

For N = 1 the cross section of surface (3.3) has a maximum and inflection point, and 
approaches the asymptote h = K4 from above; for N = 2,3 the cross sections have an 

inflection point. 
Appendix 8. Let us consider passage in the parameter space through the piece of 

the surface (iaN+i? defined by the condition 

1 3 
If” E 

for increasing h. 
“n (Iv + 1) lnT<H<H* 

Here H*is the coordinate of the line of intersection of the surfaces (a*V+lo and {PN). 

For the points of the piece in question we have 

I$ (zL,,, N + 1) = keanHN = v (~0) < u (1~~)~ min v (IL) < v1 (zL~, N + 1) 

For any arbitrarily small increase of the parameter h curve (1.10) has a point of inter- 
section with the ( N + 1 )-th branch of the curve (3.1) and intersects the straight line 

v = ~1 (~0, N + i) (~2 d Un,irr < ~3) at two points R, (IL,, vr(uO, N + I)) and R,(u,, 

VI(U~, N + 1)). 
By virtue of (1.12), for each fixed value of the parameter K there exists a value of H 

on the piece in question such that vi (~a) = v (ut). 
The equation of the surface which yields the corresponding bifurcation curve on inter- 

setting surface (3.5) is 
h -z (Ke”“HN _ I‘) (Ke2”H”’ + ;~u,s 

where u is the root of the equation 

(&““IUV - U) (K$:ff.y + S&)3 _ (,,2xff(~~+1) _ K) (u,2xff(N+1) + 343 _ 0 

This curve and H = H* isolate a domain of the indicated piece of the surface @~+r 1 
where vr (uJ > v (ul). Hence, crossing the surface {a N+l) through this domain, we enter 

the domain Ii,1 for which v1 (us) < v (~4, v1 (us) > v (Us). 

Considering the relative disposition of curves (1.10) and (3.1) which corresponds to 
the domain [IJ, we find that the transformation P transforms the segment vr (uz) < v < 
< V (%) into part of it. Hence, the compressing transformation T2 has a stable fixed 
point. 
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Carrying out a similar analysis, we can show that below the piece of surface (3.5) in 
the domain [l] there is a domain [1,] which corresponds to stable fixed points of the 

transformations T and Tn. 
The author is grateful to N. N. Bautin for his numerous comments and suggestions. 
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A system of real differential equations 

2, = p,xs - lLsys + X, (I, !/), Y$’ = P,$?l, 3 Q, -t- Y,,(s* Y) 

5 = (a, . . .,Xn), y SE (yl$ . . .I ?/n) (s = 1, . . . , n) (0.t) 

is considered. Here PLg are small, positive real parts of the complex-conjugate roots of 
the characteristic equation. X, and Ysare holomorphic functions of xs and ys, and their 

expansions begin with the terms of at least second order. 

The definition of the stability of motion in the cases close to the critical ones given 
in [l] and the results of p] extended to cover the case of n pairs of pure imaginary 
roots are used to establish the regions of stability for the system (0. I). 

1. To be able to apply the Kamenkov (3, 41 transformation to our study of the stabi- 
lity of the system (0.1) for all Ps = 0 in the nonresonant cases, we consider the equiva- 

lent problem on the stability of the system 

p=‘“ph‘+i R,(z) -+- @“‘+a RI (z) + . . . 

z 8 * = 2p"z,(d~,1(")+ z"R,d2) + . . + z,R'fL) + . . . 

/Isj(2) = R,(z) _ R$ R, = 2 z&z' (3) (Z1+...i~Crr=I,S=l,\..,~l) (I.11 

We can use the Kamenkov [3] theorem on instability as the basis for asserting that the 
unperturbed motion is unstable if at least one, nontrivial, real solution of the system of 


